Ligand-insensitive State of Cardiac ATP-sensitive K+ Channels
نویسندگان
چکیده
The mechanism by which ATP-sensitive K+ (KATP) channels open in the presence of inhibitory concentrations of ATP remains unknown. Herein, using a four-state kinetic model, we found that the nucleotide diphosphate UDP directed cardiac KATP channels to operate within intraburst transitions. These transitions are not targeted by ATP, nor the structurally unrelated sulfonylurea glyburide, which inhibit channel opening by acting on interburst transitions. Therefore, the channel remained insensitive to ATP and glyburide in the presence of UDP. "Rundown" of channel activity decreased the efficacy with which UDP could direct and maintain the channel to operate within intraburst transitions. Under this condition, the channel was sensitive to inhibition by ATP and glyburide despite the presence of UDP. This behavior of the KATP channel could be accounted for by an allosteric model of ligand-channel interaction. Thus, the response of cardiac KATP channels towards inhibitory ligands is determined by the relative lifetime the channel spends in a ligand-sensitive versus -insensitive state. Interconversion between these two conformational states represents a novel basis for KATP channel opening in the presence of inhibitory concentrations of ATP in a cardiac cell.
منابع مشابه
Effect of ATP-Dependent K+ Channel Openers and Blockers on Serum Concentration of Aldosterone in Rats
There are many reports for involvement of ATP-sensitive potassium channels in pancreatic, cardiac and vascular smooth muscle cells. This study examined the effect of single doses of K+ channel openers diazoxide, minoxidil and K+ channel blockers chlorpropamide, glibenclamide on serum concentration of aldosterone in male rats. Blood samples were obtained 60 minutes after drug treatment and serum...
متن کاملLigand-insensitive State of Cardiac ATP-sensitive K 1 Channels Basis for Channel Opening
The mechanism by which ATP-sensitive K 1 (K ATP ) channels open in the presence of inhibitory concentrations of ATP remains unknown. Herein, using a four-state kinetic model, we found that the nucleotide diphosphate UDP directed cardiac K ATP channels to operate within intraburst transitions. These transitions are not targeted by ATP, nor the structurally unrelated sulfonylurea glyburide, which...
متن کاملRole of Nitric Oxide and ATP-Sensitive K+ Channels in Regulation of Basal Blood Flow and Hypercapnic Vasodilatation of Cerebral Blood Vessels in Rabbit
Background: The mechanisms underlying cerebral hypercapnic vasodilatation are not fully understood. Objective: To investigate the role of nitric oxide (NO) and ATP-sensitive potassium (KATP) channels in basal blood flow regulation and hypercapnia-induced vasodilatation in rabbit cerebral blood vessels. Methods: The change in cerebral blood flow was measured by a laser Doppler flowmeter in 18 Ne...
متن کاملDifferences in the mechanism of metabolic regulation of ATP-sensitive K+ channels containing Kir6.1 and Kir6.2 subunits.
AIMS ATP sensitive K(+) channels (K(ATP)) sense adenine nucleotide concentrations and thus couple the metabolic state of the cell to membrane potential. The hetero-octameric complex of a sulphonylurea receptor (SUR2B) and an inwardly rectifying K(+) channel (Kir6.1) and the corresponding native channel in smooth muscle are relatively insensitive to variations in intracellular ATP. Activation of...
متن کاملNovel nucleotide-binding sites in ATP-sensitive potassium channels formed at gating interfaces.
The coupling of cell metabolism to membrane electrical activity is a vital process that regulates insulin secretion, cardiac and neuronal excitability and the responses of cells to ischemia. ATP-sensitive potassium channels (K(ATP); Kir6.x) are a major part of this metabolic-electrical coupling system and translate metabolic signals such as the ATP:ADP ratio to changes in the open or closed sta...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of General Physiology
دوره 111 شماره
صفحات -
تاریخ انتشار 1998